DUAL NATURE OF MATTER

16	3042	OB	Emi	

Thermionic emission

 $J = AT^2 e^{-\phi_0/K_BT}$

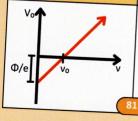
Field Emission

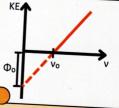
 $I = aE^2e^{b/E}$

Photo Electric Effect

Einstein's Photoelectric eq. $(E_K)_{max} = hv - \phi_o = [hv - v_o]$

Stopping Potential


 $eV_o = hc\left(\frac{1}{\lambda} - \frac{1}{\lambda_c}\right)$


Photo Electric Efficiency


no. if e emitted no. of photons absorbed

Power

Power = $n_p \varepsilon_p$

De-Broglie Equation

Particle of mass m moving with velocity v

$$\lambda = \frac{h}{p} = \frac{h}{mv} \left| \lambda = \frac{k}{\sqrt{2m \text{ K. E.}}} \right|$$

particle in electric field $\sqrt{2mq\Delta V}$

Particle is moving in Potential diff.

for electron
$$\lambda = \frac{12.2}{\sqrt{V}} \text{ Å}$$

for proton
$$\lambda = \frac{0.286}{\sqrt{V}} \text{ Å}$$

$$\lambda = \frac{0.202}{\sqrt{V}} \text{ Å}$$

for deutron
$$\lambda = \frac{0.202}{\sqrt{V}} \mathring{A} \quad \text{for } \alpha \text{ particle}$$

$$\lambda = \frac{0.101}{\sqrt{V}} \mathring{A}$$

Collision

$$V_1 = \frac{(m_1 - em_2)u_1 + (1 + e)m_2u_2}{m_1 + m_2} V_2 = \frac{(m_2 - em_1)u_2 + (1 + e)m_1u_1}{m_1 + m_2}$$

in Magnetic Field

$$\lambda = \frac{h}{qBr}$$

for Explosion

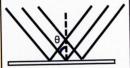
$$\lambda_2 = \frac{h}{m_2 v_2} = \frac{h}{p}$$

Kinetic Theory of Gases

$$\lambda = \frac{h}{\sqrt{fmK_BT}}$$

$$\lambda_{\text{gas molecule}} = \frac{h}{\sqrt{3mKT}}$$

Heisenberg Uncertainity Principle


It is impossible to predict simultaneously the position and momentum of an elementary particle

$$\Delta x \Delta p \ge \frac{h}{2\pi}$$

Radiation and Pressure

Surface with 100% Reflection

Surface with 100%
Absorption (Black Body)

$$F_{Plate} = \frac{2IA_s \cos^2 \theta}{c}$$

$$F_{y} = \frac{IA_{s} \cos^{2} \theta}{c} F_{x} = \frac{IA_{s} \sin \theta \cos \theta}{c}$$

$$P = \frac{2I}{c}$$

$$P = \frac{1}{c}$$

